Title: | Learning from environmental data : methods for analysis of forest nutrition time series Ympäristödatasta oppiminen: menetelmiä metsän ravintoaikasarjojen analyysiin |
Author(s): | Sulkava, Mika |
Date: | 2008-01-18 |
Language: | en |
Pages: | 52, [63] |
Department: | Department of Information and Computer Science Tietojenkäsittelytieteen laitos |
ISBN: | 978-951-22-9154-0 |
Series: | Dissertations in computer and information science. Report D, 24 |
ISSN: | 1459-7020 |
Subject: | Computer science, Environmental science |
Keywords: | data analysis, data mining, time series, forest, foliage, nutrient, environmental informatics, environmental statistics, environmental monitoring, clustering, self-organizing map, sparse regression, weighted regression, data-analyysi, tiedonlouhinta, aikasarja, metsä, neulasto, ravinne, ympäristöinformatiikka, ympäristötilastotiede, ympäristönseuranta, ryvästys, itseorganisoiva kartta, harva regressio, painotettu regressio |
OEVS yes | |
|
|
Abstract:Data-analyysimenetelmät ovat tärkeässä osassa ympäristöä koskevan tiedon kartuttamisessa, kun ympäristöstä mitatun datan määrä kasvaa. Tämä väitöskirja kuuluu ympäristöinformatiikan ja ympäristötilastotieteen aloihin. Näillä tieteenaloilla data-analyysimenetelmiä kehitetään ja sovelletaan ympäristödatan analysointiin. |
|
Parts:Juha Vesanto and Mika Sulkava (2002). Distance matrix based clustering of the Self-Organizing Map. In Dorronsoro, J. R., editor, Proceedings of the 12th International Conference on Artificial Neural Networks (ICANN 2002). Madrid, Spain, 27-30 August 2002. Lecture Notes in Computer Science, volume 2415, pages 951-956. [article1.pdf] © 2002 by authors and © 2002 Springer Science+Business Media. By permission.Mika Sulkava and Jaakko Hollmén (2003). Finding profiles of forest nutrition by clustering of the Self-Organizing Map. In Proceedings of the 4th Workshop on Self-Organizing Maps (WSOM 2003). Kitakyushu, Japan, 11-14 September 2003, pages 243-248. [article2.pdf] © 2003 WSOM'03 Organizing Committee. By permission.Sebastiaan Luyssaert, Mika Sulkava, Hannu Raitio, and Jaakko Hollmén (2004). Evaluation of forest nutrition based on large-scale foliar surveys: are nutrition profiles the way of the future? Journal of Environmental Monitoring, 6 (2): 160-167. [article3.pdf] © 2004 Royal Society of Chemistry. By permission.Sebastiaan Luyssaert, Mika Sulkava, Hannu Raitio, and Jaakko Hollmén (2005). Are N and S deposition altering the mineral composition of Norway spruce and Scots pine needles in Finland? Environmental Pollution, 138 (1): 5-17.Mika Sulkava, Jarkko Tikka, and Jaakko Hollmén (2006). Sparse regression for analyzing the development of foliar nutrient concentrations in coniferous trees. Ecological Modelling, 191 (1): 118-130.Mika Sulkava, Pasi Rautio, and Jaakko Hollmén (2005). Combining measurement quality into monitoring trends in foliar nutrient concentrations. In Duch, W., Kacprzyk, J., Oja, E., and Zadrożny, S., editors, Artificial Neural Networks: Formal Models and Their Applications, Proceedings of the 15th International Conference on Artificial Neural Networks (ICANN 2005). Warsaw, Poland, 11-15 September 2005. Lecture Notes in Computer Science, Part II, volume 3697, pages 761-767. [a rticle6.pdf] © 2005 by authors and © 2005 Springer Science+Business Media. By permission.Mika Sulkava, Sebastiaan Luyssaert, Pasi Rautio, Ivan A. Janssens, and Jaakko Hollmén (2007). Modeling the effects of varying data quality on trend detection in environmental monitoring. Ecological Informatics, 2 (2): 167-176. |
|
|
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Page content by: Aalto University Learning Centre | Privacy policy of the service | About this site