dc.contributor |
Aalto-yliopisto |
fi |
dc.contributor |
Aalto University |
en |
dc.contributor.author |
Rantala, A. |
|
dc.contributor.author |
Virtanen, H. |
|
dc.contributor.author |
Saloheimo, Kari |
|
dc.contributor.author |
Jämsä-Jounela, S-L |
|
dc.date.accessioned |
2019-09-03T13:50:39Z |
|
dc.date.available |
2019-09-03T13:50:39Z |
|
dc.date.issued |
2000 |
|
dc.identifier.citation |
Rantala , A , Virtanen , H , Saloheimo , K & Jämsä-Jounela , S-L 2000 , ' Using principal component analysis and self-organizing map to estimate the physical quality of cathode copper ' , IFAC PROCEEDINGS VOLUMES , vol. 33 , no. 22 , pp. 357-362 . https://doi.org/10.1016/S1474-6670(17)37020-9 |
en |
dc.identifier.issn |
1474-6670 |
|
dc.identifier.other |
PURE UUID: ebef6044-bf14-46ec-bdf9-96f2a5167fb2 |
|
dc.identifier.other |
PURE ITEMURL: https://research.aalto.fi/en/publications/ebef6044-bf14-46ec-bdf9-96f2a5167fb2 |
|
dc.identifier.other |
PURE FILEURL: https://research.aalto.fi/files/36392458/using_principal_component_analysis.pdf |
|
dc.identifier.uri |
https://aaltodoc.aalto.fi/handle/123456789/40146 |
|
dc.description.abstract |
The growing interest in utilising multivariable statistical dimension reduction techniques, PCA and PLS, and neural networks in process monitoring and analysis has resulted in a number of successful industrial applications. This paper describes a process study on the effects of the chemical quality of the anodes on the physical quality of produced cathodes at a copper electrorefining plant through PCA, SOM and a combination of these two techniques. The clustering of anode analysis data over time was compared with the physical quality data of the cathodes. |
en |
dc.format.extent |
357-362 |
|
dc.format.mimetype |
application/pdf |
|
dc.language.iso |
en |
en |
dc.publisher |
IFAC Secretariat |
|
dc.relation.ispartofseries |
IFAC PROCEEDINGS VOLUMES |
en |
dc.relation.ispartofseries |
Volume 33, issue 22 |
en |
dc.rights |
openAccess |
en |
dc.title |
Using principal component analysis and self-organizing map to estimate the physical quality of cathode copper |
en |
dc.type |
Conference article |
fi |
dc.description.version |
Peer reviewed |
en |
dc.contributor.department |
Department of Biotechnology and Chemical Technology |
en |
dc.subject.keyword |
copper |
|
dc.subject.keyword |
data mining |
|
dc.subject.keyword |
principal component analysis |
|
dc.subject.keyword |
process monitoring |
|
dc.subject.keyword |
refining |
|
dc.subject.keyword |
self-organizing map |
|
dc.subject.keyword |
hybrid method |
|
dc.identifier.urn |
URN:NBN:fi:aalto-201909035188 |
|
dc.identifier.doi |
10.1016/S1474-6670(17)37020-9 |
|
dc.type.version |
preprint |
|