Learning Centre

Using principal component analysis and self-organizing map to estimate the physical quality of cathode copper

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Rantala, A.
dc.contributor.author Virtanen, H.
dc.contributor.author Saloheimo, Kari
dc.contributor.author Jämsä-Jounela, S-L
dc.date.accessioned 2019-09-03T13:50:39Z
dc.date.available 2019-09-03T13:50:39Z
dc.date.issued 2000
dc.identifier.citation Rantala , A , Virtanen , H , Saloheimo , K & Jämsä-Jounela , S-L 2000 , ' Using principal component analysis and self-organizing map to estimate the physical quality of cathode copper ' , IFAC PROCEEDINGS VOLUMES , vol. 33 , no. 22 , pp. 357-362 . https://doi.org/10.1016/S1474-6670(17)37020-9 en
dc.identifier.issn 1474-6670
dc.identifier.other PURE UUID: ebef6044-bf14-46ec-bdf9-96f2a5167fb2
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/ebef6044-bf14-46ec-bdf9-96f2a5167fb2
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/36392458/using_principal_component_analysis.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/40146
dc.description.abstract The growing interest in utilising multivariable statistical dimension reduction techniques, PCA and PLS, and neural networks in process monitoring and analysis has resulted in a number of successful industrial applications. This paper describes a process study on the effects of the chemical quality of the anodes on the physical quality of produced cathodes at a copper electrorefining plant through PCA, SOM and a combination of these two techniques. The clustering of anode analysis data over time was compared with the physical quality data of the cathodes. en
dc.format.extent 357-362
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher IFAC Secretariat
dc.relation.ispartofseries IFAC PROCEEDINGS VOLUMES en
dc.relation.ispartofseries Volume 33, issue 22 en
dc.rights openAccess en
dc.title Using principal component analysis and self-organizing map to estimate the physical quality of cathode copper en
dc.type Conference article fi
dc.description.version Peer reviewed en
dc.contributor.department Department of Biotechnology and Chemical Technology en
dc.subject.keyword copper
dc.subject.keyword data mining
dc.subject.keyword principal component analysis
dc.subject.keyword process monitoring
dc.subject.keyword refining
dc.subject.keyword self-organizing map
dc.subject.keyword hybrid method
dc.identifier.urn URN:NBN:fi:aalto-201909035188
dc.identifier.doi 10.1016/S1474-6670(17)37020-9
dc.type.version preprint


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics