Learning Centre

Electrostatic Self-Assembly of Protein Cage Arrays

 |  Login

Show simple item record

dc.contributor Aalto-yliopisto fi
dc.contributor Aalto University en
dc.contributor.author Chakraborti, Soumyananda
dc.contributor.author Korpi, Antti
dc.contributor.author Heddle, Jonathan G.
dc.contributor.author Kostiainen, Mauri A.
dc.contributor.editor Ryadnov, Maxim G.
dc.date.accessioned 2020-09-25T07:06:00Z
dc.date.available 2020-09-25T07:06:00Z
dc.date.issued 2021-01-01
dc.identifier.citation Chakraborti , S , Korpi , A , Heddle , J G & Kostiainen , M A 2021 , Electrostatic Self-Assembly of Protein Cage Arrays . in M G Ryadnov (ed.) , Polypeptide materials : methods and protocols . vol. 2208 , Methods in molecular biology , vol. 2208 , Humana Press , pp. 123-133 . https://doi.org/10.1007/978-1-0716-0928-6_8 en
dc.identifier.isbn 978-1-0716-0927-9
dc.identifier.isbn 978-1-0716-0928-6
dc.identifier.issn 1064-3745
dc.identifier.issn 1940-6029
dc.identifier.other PURE UUID: a92b4248-260f-4a85-802d-e09da348875d
dc.identifier.other PURE ITEMURL: https://research.aalto.fi/en/publications/a92b4248-260f-4a85-802d-e09da348875d
dc.identifier.other PURE LINK: http://www.scopus.com/inward/record.url?scp=85090016674&partnerID=8YFLogxK
dc.identifier.other PURE FILEURL: https://research.aalto.fi/files/51645061/CHEM_Chakraborti_et_al_Electrostatic_Self_Assembly_of_Protein_Cage_Arrays_Polypeptide_Materials.pdf
dc.identifier.uri https://aaltodoc.aalto.fi/handle/123456789/46616
dc.description.abstract Protein and peptide cages are nanoscale containers, which are of particular interest in nanoscience due to their well-defined dimensions and enclosed central cavities that can be filled with material that is protected from the outside environment. Ferritin is a typical example of protein cage, formed by 24 polypeptide chains that self-assemble into a hollow, roughly spherical protein cage with external and internal diameters of approximately 12 nm and 8 nm, respectively. The interior cavity of ferritin provides a unique reaction vessel to carry out reactions separated from the exterior environment. In nature, the cavity is utilized for sequestration and biomineralization to render iron inert and safe by shielding from the external environment. Materials scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate cargoes ranging from cancer drugs to therapeutic proteins. Interesting possibilities arise if such containers can themselves be arranged into even higher-order structures such as crystalline arrays. Here, we describe how crystalline arrays of negatively charged ferritin protein cages can be built by taking advantage of electrostatic interactions with cationic gold nanoparticles. en
dc.format.extent 11
dc.format.extent 123-133
dc.format.mimetype application/pdf
dc.language.iso en en
dc.publisher Humana Press
dc.relation.ispartofseries Polypeptide materials : methods and protocols en
dc.relation.ispartofseries Volume 2208 en
dc.relation.ispartofseries Methods in molecular biology en
dc.rights openAccess en
dc.title Electrostatic Self-Assembly of Protein Cage Arrays en
dc.type A3 Kirjan tai muun kokoomateoksen osa fi
dc.description.version Peer reviewed en
dc.contributor.department Jagiellonian University in Kraków
dc.contributor.department Biohybrid Materials
dc.contributor.department Department of Bioproducts and Biosystems en
dc.subject.keyword Nanocontainers
dc.subject.keyword Nanocrystals
dc.subject.keyword Protein cage
dc.subject.keyword Protein design
dc.subject.keyword Protein engineering
dc.identifier.urn URN:NBN:fi:aalto-202009255546
dc.identifier.doi 10.1007/978-1-0716-0928-6_8
dc.date.embargo info:eu-repo/date/embargoEnd/2022-08-28


Files in this item

Files Size Format View

There are no open access files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search archive


Advanced Search

article-iconSubmit a publication

Browse

Statistics